

# UNI-TREND TECHNOLOGY (CHINA) CO.,LTD.

**TEST REPORT** 

#### **SCOPE OF WORK**

EMC TESTING-UTi384G, UTi256G

## **REPORT NUMBER**

220623148GZU-007

**ISSUE DATE** 

[REVISED DATE]

29-August-2022

[-----]

## **PAGES**

38

#### **DOCUMENT CONTROL NUMBER**

FCC Part 15:2020-f © 2017 INTERTEK





Room 02, & 101/E201/E301/ E401/E501/E601/E701/E801 of Room 01 1-8/F., No. 7-2. Caipin Road, Science City, GETDD, Guangzhou, Guangdong, China Telephone: +86 20 8213 9688 Facsimile: +86 20 3205 7538

www.intertek.com.cn

Applicant Name &

: UNI-TREND TECHNOLOGY (CHINA) CO.,LTD.

Address

No 6, Gong Ye Bei 1 st Road, Songshan Lake National High-Tech Industrial Development Zone, Dongguan, Guangdong Province,

China

Manufacturing Site : Same as Applicant Intertek Report No: 220623148GZU-007

#### **Test standards**

CFR 47, FCC Part 15, Subpart B: 2020

## **Sample Description**

Product : Professional Thermal Imager

Model No. : UTi384G, UTi256G

Electrical Rating : Powered by 3.7V rechargeable Li-ion battery

Serial No. Not Labeled
Date Received: 23 June 2022
Date Test: 21 July 2022

Conducted

| Prepared and Checked By | Approved By:     |
|-------------------------|------------------|
| Richard Liu             | Dan Im           |
| Richard Liu             | Dean Liu         |
| Engineer                | Project Engineer |

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch

Room 02, & 101/E201/E301/E401/E501/E601/E701/E801 of Room 01 1-8/F., No. 7-2. Caipin Road, Science City, GETDD, Guangzhou, Guangdong, China

Version: 19-September-2021 Page 2 of 38 FCC Part 15:2020-f



# **CONTENT**

| <b>TEST F</b> | REPORT  |                                            | 1  |
|---------------|---------|--------------------------------------------|----|
| CON.          | TENT    |                                            | 3  |
| 1.            | TEST RE | ESULTS SUMMARY                             | 4  |
| 2.            | EMC RE  | ESULTS CONCLUSION                          | 5  |
| 3.            |         | ATORY MEASUREMENTS                         |    |
| 4.            |         | MENT USED DURING TEST                      |    |
| 5.            |         | ST                                         |    |
| 5.3           | 1 Con   | NDUCTED DISTURBANCE VOLTAGE AT MAINS PORTS | 9  |
|               | 5.1.1   | Block Diagram of Test Setup                |    |
|               | 5.1.2   | Test Setup and Procedure                   |    |
|               | 5.1.3   | Limit                                      |    |
|               | 5.1.4   | Test Data and curve                        |    |
| 5.2           | 2 RAD   | DIATED EMISSION 30 MHz -1000 MHz           |    |
|               | 5.2.1   | Block Diagram of Test Setup                |    |
|               | 5.2.2   | Test Setup and Procedure                   |    |
|               | 5.2.3   | Limit                                      |    |
|               | 1.1.1   | Test Data and Curve                        |    |
| 5.3           | 3 RAD   | DIATED EMISSION ABOVE 1 GHz                | 21 |
|               | 5.3.1   | Block Diagram of Test Setup                | 21 |
|               | 1.1.2   | Test Setup and Procedure                   | 21 |
|               | 5.3.2   | Limit                                      | 22 |
|               | 5.3.3   | Test Data and Curve                        |    |
| 6.            | APPENI  | DIX I - PHOTOS OF TEST SETUP               | 26 |
| 7.            | APPENI  | DIX II – PHOTOS OF EUT                     | 28 |



# 1. TEST RESULTS SUMMARY

Classification of EUT: Class A

| Test Item                                                                 | Standard                       | Result |
|---------------------------------------------------------------------------|--------------------------------|--------|
| Conducted disturbance voltage at mains ports                              | CFR 47, FCC Part 15, Subpart B | Pass   |
| Radiated emission (30 MHz-1 GHz)                                          | CFR 47, FCC Part 15, Subpart B | Pass   |
| Radiated emission (Above 1 GHz)                                           | CFR 47, FCC Part 15, Subpart B | Pass   |
| Remark:                                                                   |                                |        |
| Reference publication is used for methods of measurement: ANSI C63.4:2014 |                                |        |

# Remark:

- 1. The symbol "N/A" in above table means Not Applicable.
- 2. When determining the test results, measurement uncertainty of tests has been considered.



#### 2. EMC RESULTS CONCLUSION

RE: EMC Testing Pursuant to FCC part 15 performed on the Professional Thermal Imager, Models: UTi384G, UTi256G.

Model UTi256G is declared to be identical to model UTi384G in terms of electrical and mechanical design. The Model UTi384G has better video recording and resolution than the Model UTi256G.

We tested the Professional Thermal Imager, Model: UTi384G, to determine if it was in compliance with the relevant standards as marked on the Test Results Summary. We found that the unit met the requirement of FCC part 15 standard when tested as received. The worst case's test data was presented in this test report.

The production units are required to conform to the initial sample as received when the units are placed on the market.

Version: 19-September-2021 Page 5 of 38 FCC Part 15:2020-f



#### 3. LABORATORY MEASUREMENTS

#### **Configuration Information**

#### Support Equipment:

| Equipment | Model No. | Rating                  | Supplier |
|-----------|-----------|-------------------------|----------|
| Adapter   | A1401     | 100-240~, 50/60Hz, 0.5A | Intertek |

Rated Voltage and frequency under test: AC 120  $V^{\sim}$ ; 60 Hz,3.7V DC Condition of Environment: Temperature: 22 $^{\sim}$ 28 $^{\circ}$ C Relative Humidity:35 $^{\sim}$ 60%

Atmosphere Pressure:86~106kPa

#### Notes:

1. The EMI measurements had been made in the operating mode produced the largest emission in the frequency band being investigated consistent with normal applications. An attempt had been made to maximize the emission by varying the configuration of the EUT.

#### 2. Test Facility accreditation:

A2LA Certificate Number 0078.10

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch is accredited by A2LA and Listed in FCC website. FCC accredited test labs may perform both Certification testing under Parts 15 and 18 and Declaration of Conformity testing.

#### 3. Test Location:

Intertek Testing Services Shenzhen Ltd. Guangzhou Branch

All tests were performed at:

Room 02, & 101/E201/E301/E401/E501/E601/E701/E801 of Room 01 1-8/F., No. 7-2. Caipin Road, Science City, GETDD, Guangzhou, Guangdong, China

Except Radiated Emissions was performed at:

Room 102/104, No 203, KeZhu Road, Science City, GETDD Guangzhou, China

## 4. Measurement Uncertainty

| No. | ltem                                | Measurement Uncertainty |
|-----|-------------------------------------|-------------------------|
| 1   | Conducted Emission (9 kHz-150 kHz)  | 2.54 dB                 |
| 2   | Conducted Emission (150 kHz-30 MHz) | 2.51 dB                 |
| 3   | Disturbance Power (30 MHz-300 MHz)  | 3.13 dB                 |
| 4   | Radiated Emission (9 kHz-30 MHz)    | 4.15 dB                 |
| 5   | Radiated Emission (30 MHz-1 GHz)    | 4.62 dB                 |
| 6   | Radiated Emission (1 GHz-6 GHz)     | 4.67 dB                 |
| 7   | Radiated Emission (6 GHz-18 GHz)    | 4.76 dB                 |

The measurement uncertainty describes the overall uncertainty of the given measured value during the operation of the EUT.

Measurement uncertainty is calculated in accordance with CISPR16-4-2:2011+A1:2014 +A2:2018.

The measurement uncertainty is given with a confidence of 95%, k=2.

Determination of the test conclusion is based on IEC Guide 115 in consideration of measurement uncertainty.



# 4. EQUIPMENT USED DURING TEST

**Conducted Disturbance-Mains Terminal (2)** 

| Equipment<br>No. | Equipment                                | Model     | Manufacturer | Calibration<br>Interval |
|------------------|------------------------------------------|-----------|--------------|-------------------------|
| EM031-04         | EMI receiver                             | ESR3      | R&S          | 1Y                      |
| EM006-06         | LISN                                     | ENV216    | R&S          | 1Y                      |
| SA047-111        | Digital Temperature-Humidity<br>Recorder | RS210     | YIJIE        | 1Y                      |
| EM004-03         | EMC shield Room                          | 8m×4m×3m  | Zhongyu      | 1Y                      |
| EM031-04-01      | EMC32 software (CE)                      | V10.01.00 | R&S          | N/A                     |

# Radiated Disturbance (30 MHz-1 GHz)

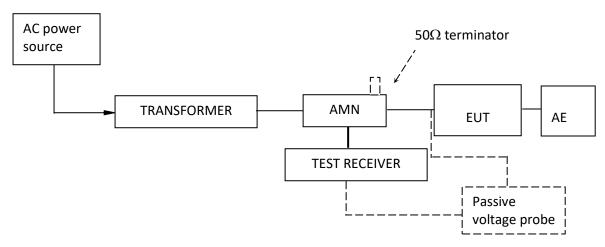
| Madated Distance (50 Mile 1 Gire) |                                                       |           |              |                         |
|-----------------------------------|-------------------------------------------------------|-----------|--------------|-------------------------|
| Equipment<br>No.                  | Equipment                                             | Model     | Manufacturer | Calibration<br>Interval |
| EM030-04                          | 3m Semi-Anechoic Chamber                              | 9×6×6 m3  | ETS-LINDGREN | 1Y                      |
| EM031-02                          | EMI Test Receiver (9 kHz~7<br>GHz)                    | R&S ESR7  | R&S          | 1Y                      |
| EM033-01                          | TRILOG Super Broadband test<br>Antenna (30 MHz-3 GHz) | VULB 9163 | SCHWARZBECK  | 1Y                      |
| EM031-02-<br>01                   | Coaxial cable                                         | /         | R&S          | 1Y                      |
| EM036-01                          | Common-mode absorbing clamp                           | CMAD 20B  | TESEQ        | 1Y                      |
| SA047-118                         | Digital Temperature-Humidity<br>Recorder              | RS210     | YIJIE        | 1Y                      |
| EM045-01-<br>01                   | EMC32 software (RE/RS)                                | V10.01.00 | R&S          | N/A                     |



Detail of the equipment calibration due date:

| Faurina and No.               | Cal. Due date  |  |
|-------------------------------|----------------|--|
| Equipment No.                 | (DD-MM-YYYY)   |  |
| Conducted Disturbance-Mains   |                |  |
| Terminal (1)                  |                |  |
| EM080-05                      | 08/06/2023     |  |
| EM006-05                      | 05/06/2023     |  |
| SA047-112                     | 22/11/2022     |  |
| EM004-04                      | 06/01/2023     |  |
| Conducted Distur              | rbance-Mains   |  |
| EM031-04                      | 06/01/2023     |  |
| EM006-06                      | 03/09/2022     |  |
| SA047-111                     | 22/11/2022     |  |
| EM004-03                      | 06/01/2023     |  |
| EM031-04-01                   | N/A            |  |
| Conducted Distu               |                |  |
| Control Terminal              |                |  |
| EM080-05                      | 08/06/2023     |  |
| EM080-05-01                   | 02/09/2022     |  |
| SA047-112                     | 22/11/2022     |  |
| EM004-04                      | 06/01/2023     |  |
| Conducted Distur              | bance-Load and |  |
| Control Terminal              | (2)            |  |
| EM080-05                      | 08/06/2023     |  |
| EM005-06-01                   | 02/09/2022     |  |
| SA047-112                     | 22/11/2022     |  |
| EM004-04                      | 06/01/2023     |  |
| Conducted Disturbance-Telecom |                |  |
| Terminal                      |                |  |
| EM080-05                      | 08/06/2023     |  |
| EM011-05                      | 08/04/2023     |  |
| EM011-06                      | 08/04/2023     |  |
| EM006-06                      | 03/09/2022     |  |
| SA047-112                     | 22/11/2022     |  |
| EM004-04                      | 6/01/2023      |  |
| Conducted Distur              | bance-Antenna  |  |
| Terminal                      |                |  |
| EM031-04                      | 06/01/2023     |  |
| EM084-02                      | 17/07/2023     |  |
| EM041-01                      | 23/01/2023     |  |
| EM041-02                      | 06/01/2023     |  |
| SA047-111                     | 22/11/2022     |  |
| EM004-03                      | 06/01/2023     |  |

| Equipment No.                                 | Cal. Due date            |
|-----------------------------------------------|--------------------------|
| Radiated Disturb                              | (DD-MM-YYYY)             |
| Radiated Disturb<br>Method)                   | ance (CDN                |
| EM080-05                                      | 08/06/2023               |
| EM003-02                                      | 16/11/2022               |
| EM003-02                                      | 16/11/2022               |
| EM003-01-05                                   | 02/09/2022               |
| EM032-02-01                                   | 14/07/2023               |
| EM032-02-02                                   | 14/07/2023               |
| SA047-112                                     | 22/11/2022               |
| EM004-04                                      | 06/01/2023               |
| Radiated electro                              | magnetic                 |
| disturbances (9 k                             | Hz-30 MHz)               |
| EM031-04                                      | 06/01/2023               |
| EM061-04                                      | 06/01/2023<br>06/03/2023 |
| SA047-111                                     | 22/11/2022               |
| EM004-03                                      | 06/01/2023               |
| Radiated Disturb                              | ance (9 kHz-30           |
| MHz)                                          | 0=/0/0000                |
| EM030-04                                      | 07/04/2023               |
| EM031-02                                      | 16/11/2022               |
| EM011-04                                      | 27/06/2023               |
| EM031-02-01                                   | 08/04/2023               |
| SA047-118                                     | 15/07/2023               |
| EM045-01-01 N/A Radiated Disturbance (30 MHz- |                          |
| Radiated Disturb<br>GHz)                      | ance (30 MHz-1           |
| EM030-04                                      | 07/04/2023               |
| EM031-02                                      | 16/11/2022               |
| EM033-01                                      | 18/10/2022               |
| EM031-02-01                                   | 08/04/2023               |
| EM036-01                                      | 17/07/2023<br>15/07/2023 |
| SA047-118                                     | 15/07/2023               |
| EM045-01-01                                   | N/A                      |
| Radiated Disturb                              |                          |
| EM030-04                                      | 07/04/2023               |
| EM031-02                                      | 16/11/2022               |
| EM031-03                                      | 23/12/2022               |
| EM033-02                                      | 26/06/2023               |
| EM033-02-02                                   | 08/04/2023<br>06/05/2023 |
| EM022-03                                      | 06/05/2023               |
| SA047-118                                     | 15/07/2023               |
| EM045-01-01                                   | N/A                      |




#### 5. EMITEST

#### 5.1 Conducted Disturbance Voltage at mains ports

**Test Result: Pass** 

#### 5.1.1 Block Diagram of Test Setup



#### 5.1.2 Test Setup and Procedure

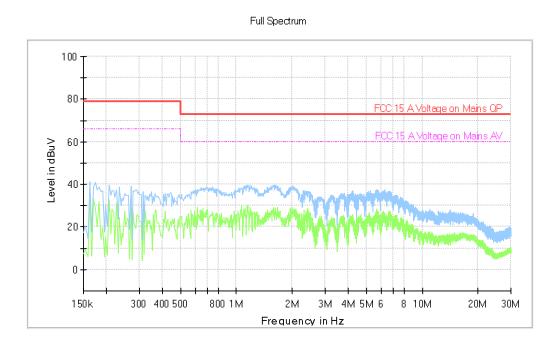
The EUT was set to achieve the maximum emission level. The mains terminal disturbance voltage was measured with the EUT in a shielded room. The EUT was connected to AC power source through an Artificial Mains Network which provides a  $50\Omega$  linear impedance Artificial hand is used if appropriate (for handheld apparatus). The load/control terminal disturbance voltage was measured with passive voltage probe if appropriate.

The table-top EUT was placed on a 0.8m high non-metallic table above earthed ground plane(Ground Reference Plane). And for floor standing EUT, was placed on a 0.1m high non-metallic supported on GRP. The EUT keeps a distance of at least 0.8m from any other of the metallic surface. The Artificial Mains Network is situated at a distance of 0.8m from the EUT. During the test, mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m.

The bandwidth of test receiver was set at 9 kHz. The frequency range from 150 kHz to 30MHz was checked.

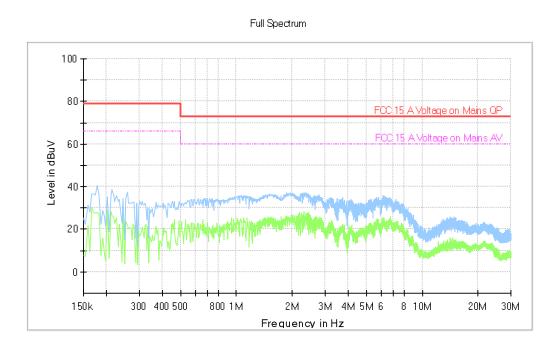


# 5.1.3 Limit


| Frequency range<br>MHz                                           | AC mains terminals<br>dB (uV) |         |
|------------------------------------------------------------------|-------------------------------|---------|
| 141112                                                           | Quasi-peak                    | Average |
| 0.15 to 0.5                                                      | 79                            | 66      |
| 0.5 to 30                                                        | 73 60                         |         |
| Note: The lower limit is applicable at the transition frequency. |                               |         |



## 5.1.4 Test Data and curve

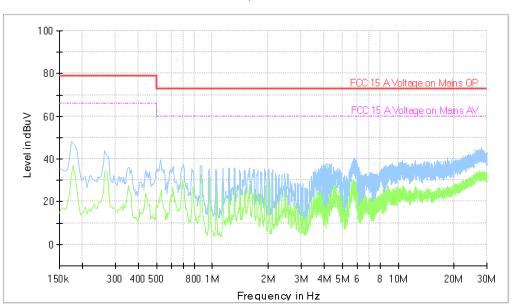

At mains terminal:

Tested Wire: Live Operation Mode: Thermal imaging and charging mode





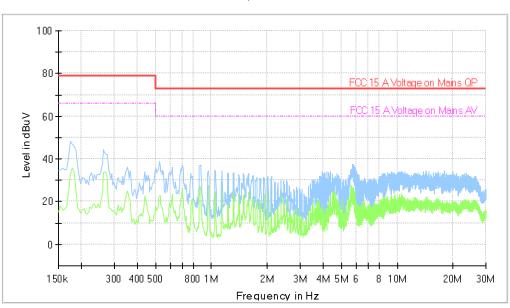
# Tested Wire: Neutral Operation Mode: Thermal imaging and charging mode






At mains terminal:

Tested Wire: Live Operation Mode: Charging mode

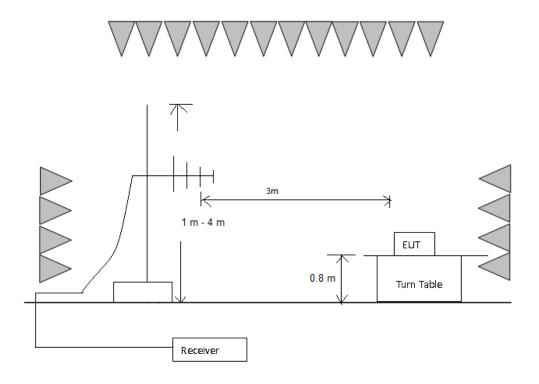

Full Spectrum





Tested Wire: Neutral Operation Mode: Charging mode

Full Spectrum






#### 5.2 Radiated Emission 30 MHz -1000 MHz

**Test Result: Pass** 

#### 5.2.1 Block Diagram of Test Setup



#### 5.2.2 Test Setup and Procedure

The measurement was applied in a semi-anechoic chamber. The EUT and simulators were placed on a 0.8 m high foamed table above the horizontal metal ground plane. The turn table rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mask. The antenna moved up and down between from 1 meter to 4 meters to find out the maximum emission level.

Broadband antenna was used as receiving antenna. Both horizontal and vertical polarization of the antenna was set on measurement. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4 requirement during radiated test.

The bandwidth setting on R&S Test Receiver was 120 kHz.

For an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

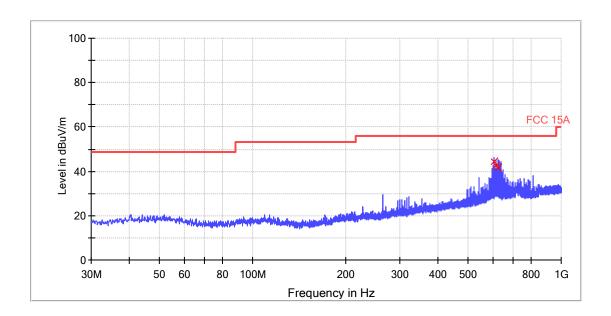


| Highest frequency generated or used in the device or on which the device operates or tunes (MHz) | Upper Frequency of Radiated Measurement |
|--------------------------------------------------------------------------------------------------|-----------------------------------------|
| Below 1.705 MHz                                                                                  | 30MHz                                   |
| 1.705 MHz – 108 MHz                                                                              | 1 GHz                                   |
| 108 MHz – 500 MHz                                                                                | 2 GHz                                   |
| 500 MHz – 1 GHz                                                                                  | 5 GHz                                   |
| Above 1 GHz                                                                                      | 5th harmonic of the highest frequency   |
|                                                                                                  | or 40 GHz, whichever is lower.          |
| At transitional frequencies the lower limit applies.                                             |                                         |

Remark: Radiated Emission was performed from 30 MHz to 1 GHz.

## 5.2.3 Limit

# Class A limit at 3 m test distance:


| Frequency range<br>MHz                               | <b>Quasi-peak limits</b><br>dB (μV/m) |
|------------------------------------------------------|---------------------------------------|
| 30 to 88                                             | 49.6                                  |
| 88 to 216                                            | 54.0                                  |
| 216 to 960                                           | 56.9                                  |
| 960 to 1000                                          | 60.0                                  |
| At transitional frequencies the lower limit applies. |                                       |



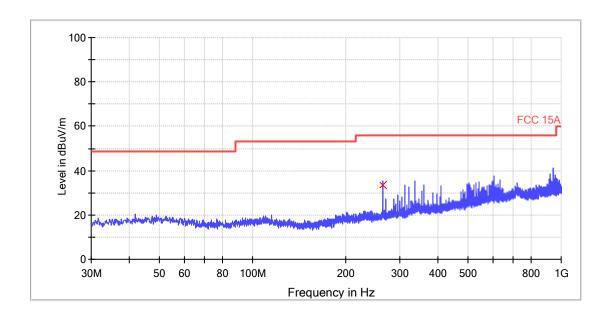
#### 1.1.1 Test Data and Curve

Operation Mode: Thermal imaging mode

Horizontal



# QP


| Frequency<br>(MHz) | Quasi<br>Peak<br>(dBuV/<br>m) | Bandwidth<br>(kHz) | Pol | Corr.<br>(dB) | Margin -<br>QPK<br>(dB) | Limit -<br>QPK<br>(dBuV/m) |
|--------------------|-------------------------------|--------------------|-----|---------------|-------------------------|----------------------------|
| 607.480000         | 44.4                          | 120.000            | Н   | 21.4          | 12.6                    | 57.0                       |
| 615.960000         | 42.8                          | 120.000            | Н   | 21.5          | 14.2                    | 57.0                       |
| 624.400000         | 41.9                          | 120.000            | Н   | 21.5          | 15.1                    | 57.0                       |

## Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak ( $dB\mu V/m$ ) = Corr. (dB) + Read Level ( $dB\mu V$ )
- 3. Margin (dB) = Limit QPK (dB $\mu$ V/m) –Quasi Peak (dB $\mu$ V/m)

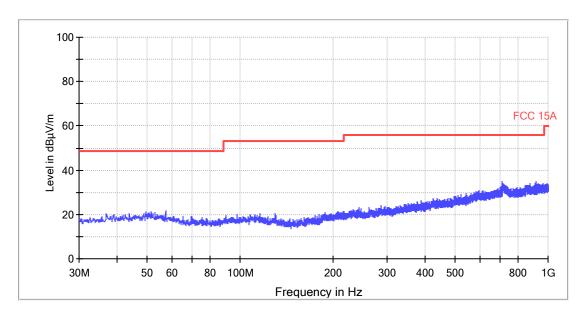


## Vertical



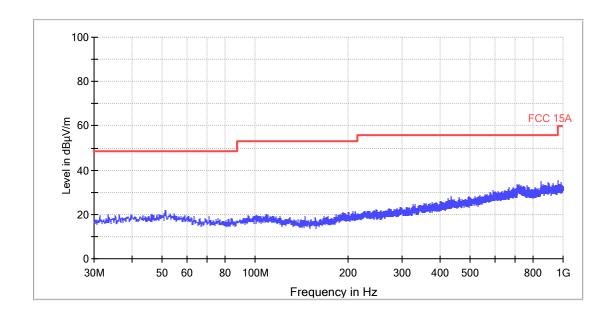
# QP

| Frequency<br>(MHz) | Quasi<br>Peak<br>(dBuV/<br>m) | Bandwidth<br>(kHz) | Pol | Corr.<br>(dB) | Margin -<br>QPK<br>(dB) | Limit -<br>QPK<br>(dBuV/m) |
|--------------------|-------------------------------|--------------------|-----|---------------|-------------------------|----------------------------|
| 263.960000         | 33.5                          | 120,000            | V   | 14.2          | 23.5                    | 57.0                       |


## Remark:

- 1. Corr. (dB) = Antenna Factor (dB) + Cable Loss (dB)
- 2. Quasi Peak ( $dB\mu V/m$ ) = Corr. (dB) + Read Level ( $dB\mu V$ )
- 3. Margin (dB) = Limit QPK (dB $\mu$ V/m) –Quasi Peak (dB $\mu$ V/m)

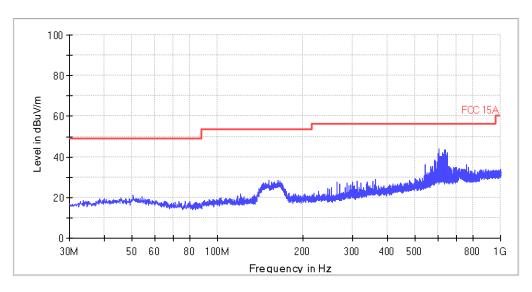



Operation Mode: Charging mode

#### Horizontal

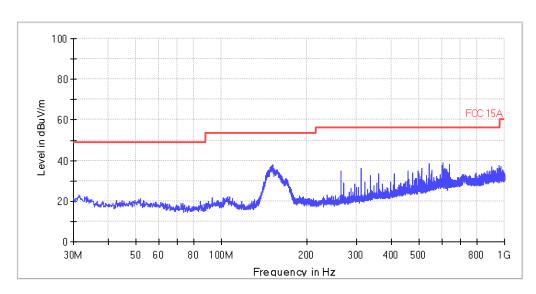


All emission levels are more than 6 dB below the limit.


## Vertical





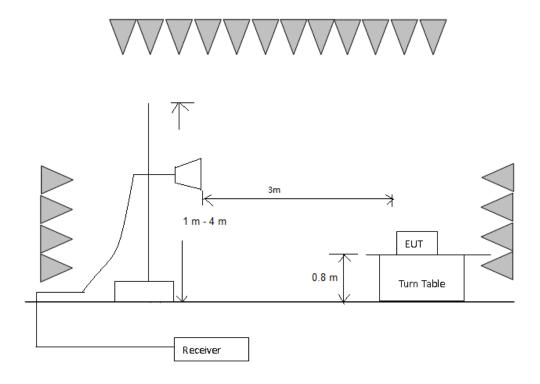

Operation Mode: Thermal imaging and charging mode

## Horizontal



All emission levels are more than 6 dB below the limit.

## Vertical






#### 5.3 Radiated Emission above 1 GHz

Test Result: Pass

#### 5.3.1 Block Diagram of Test Setup



#### 1.1.2 Test Setup and Procedure

The measurement was applied in a semi-anechoic chamber with absorbing material placed on the ground. The EUT were placed on a 0.8m high foamed table above the horizontal metal ground plane. The turntable varied every 30 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna pole. The antenna moved up and down from 1 meter to 4 meters to find out the maximum emission level.

Horn antenna was used as receiving antenna. Both horizontal and vertical polarization of the antenna was set on measurement. In order to find the maximum emission, all of the interface cables were manipulated during radiated test.

For an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

| Highest Frequency Generated or Used in Device | Upper Frequency of<br>Radiated Measurement |  |
|-----------------------------------------------|--------------------------------------------|--|
| Below 1.705 MHz                               | 30MHz                                      |  |

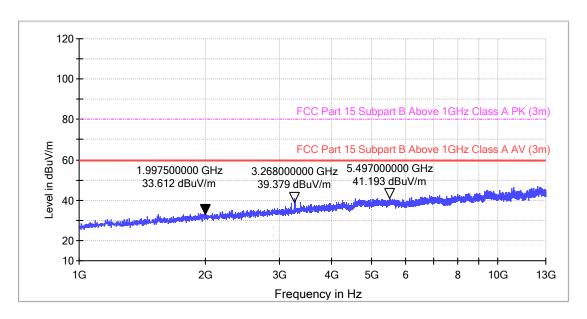


| 1.705 MHz – 108 MHz                                  | 1 GHz                             |
|------------------------------------------------------|-----------------------------------|
| 108 MHz – 500 MHz                                    | 2 GHz                             |
| 500 MHz – 1 GHz                                      | 5 GHz                             |
| Above 1 GHz                                          | 5th harmonic of the highest       |
|                                                      | frequency or 40 GHz, whichever is |
|                                                      | lower.                            |
| At transitional frequencies the lower limit applies. |                                   |

Remark: Radiated Emission was performed from 1 GHz to 13 GHz since the highest frequency generated from the EUT was 2480 MHz.

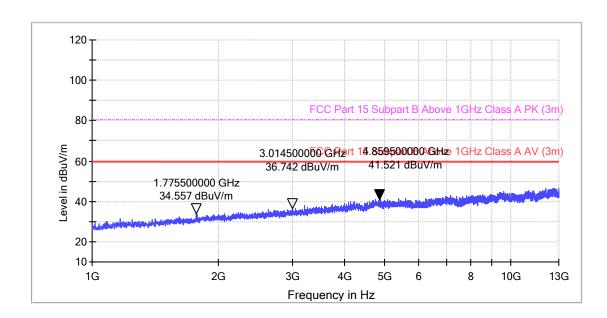
# 5.3.2 Limit

Class A limit at 3 m test distance:


| Frequency range<br>MHz                               | Linear Average Detector<br>dB (μV/m) | Peak Detector<br>dB (μV/m) |  |  |
|------------------------------------------------------|--------------------------------------|----------------------------|--|--|
| > 1000                                               | 60.0                                 | 80.0                       |  |  |
| At transitional frequencies the lower limit applies. |                                      |                            |  |  |



#### 5.3.3 Test Data and Curve


Operation Mode: Thermal imaging mode

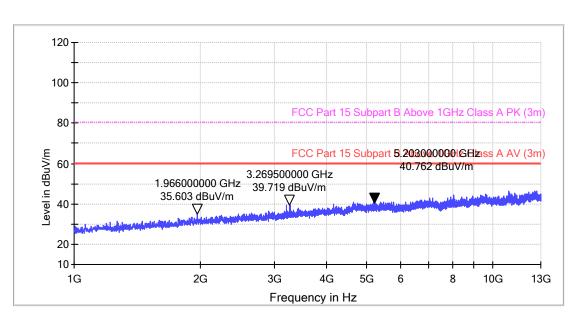
Horizontal



All emission levels are more than 6 dB below the limit.

When Peak emission level was below AV limit, the AV emission level did not be record Vertical

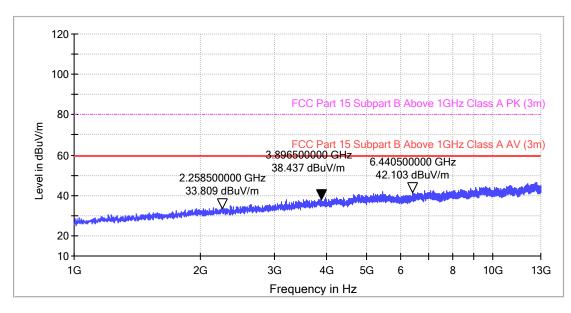



All emission levels are more than 6 dB below the limit.

When Peak emission level was below AV limit, the AV emission level did not be record



Operation Mode: Charging mode

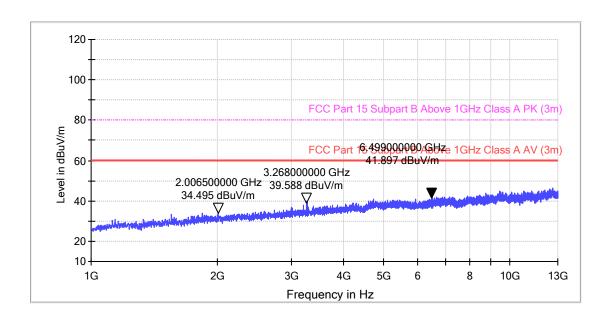

Horizontal



All emission levels are more than 6 dB below the limit.

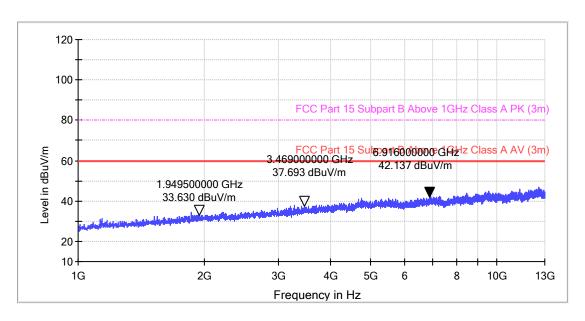
When Peak emission level was below AV limit, the AV emission level did not be record

## Vertical




All emission levels are more than 6 dB below the limit.

When Peak emission level was below AV limit, the AV emission level did not be record

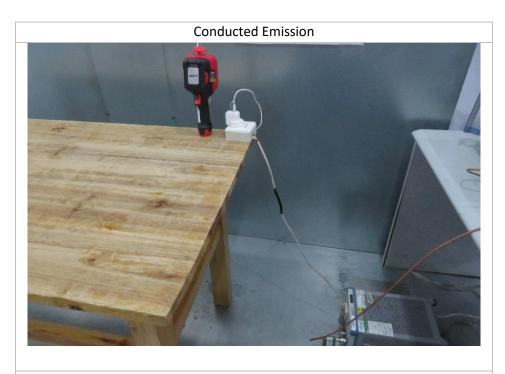



Operation Mode: Thermal imaging and charging mode Horizontal



All emission levels are more than 6 dB below the limit.

When Peak emission level was below AV limit, the AV emission level did not be record Vertical




All emission levels are more than 6 dB below the limit.

When Peak emission level was below AV limit, the AV emission level did not be record.



# 6. APPENDIX I - PHOTOS OF TEST SETUP



Radiated Emission (30 MHz-1000 MHz)









# 7. APPENDIX II – PHOTOS OF EUT



External view













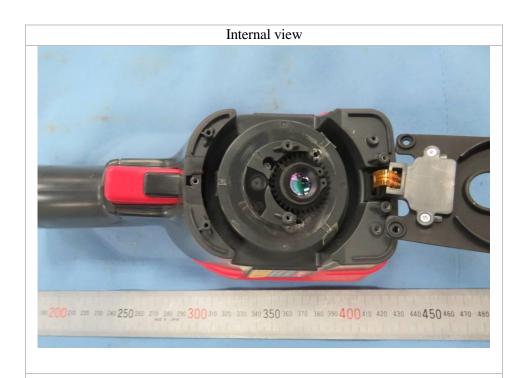






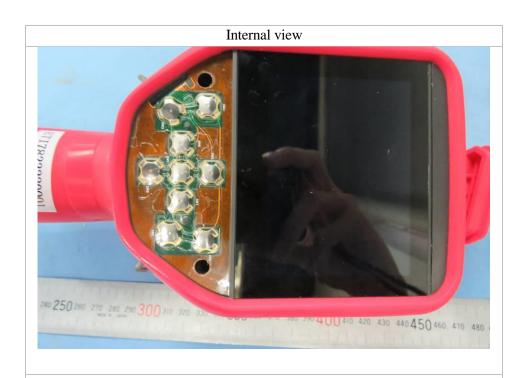


# Battery view



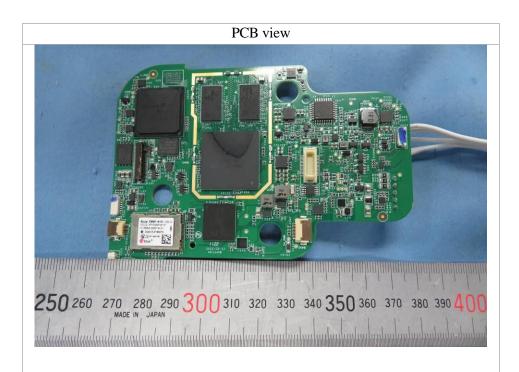








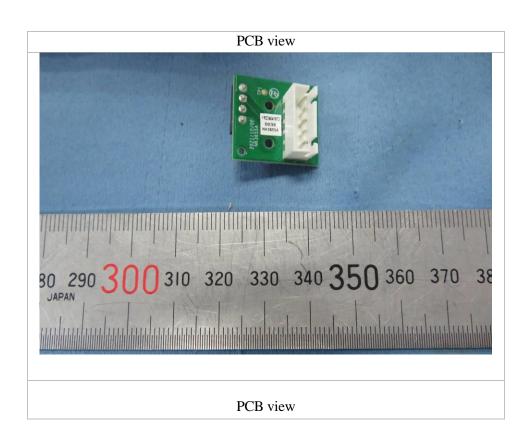





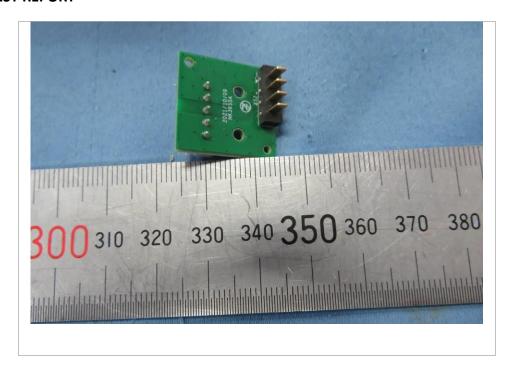












# PCB view

